

Vom Shapefile zum GeoPackage

Ein kurzer Überblick über die wichtigsten GIS-Datenformate

Was sind GIS-Datenformate

Definition

GIS-Datenformate sind spezielle Dateitypen, die geografische Informationen und deren Attribute speichern.

Sie bilden die Grundlage für die Arbeit in GIS-Programmen und ermöglichen die Analyse, Darstellung und Verwaltung von räumlichen Daten.

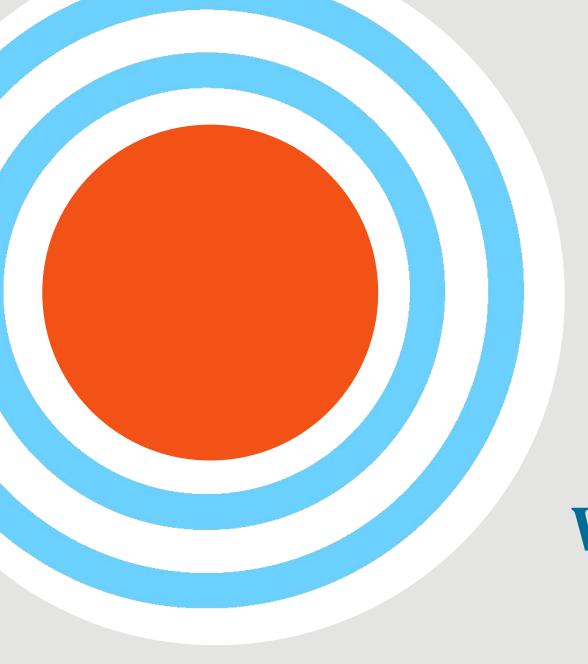
Warum braucht man Datenformate?

WKT ist eine OGC-konforme Textdarstellung von Geometrien. Es beschreibt einfache geometrische Objekte in einer einfacher Textform:

```
POINT (8.6821 50.1109)
LINESTRING (30 10, 10 30, 40 40)
POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))
```

WKT dient jedoch nicht der Speicherung kompletter GIS-Datensätze, sondern der Beschreibung einzelner Geometrien. Es ist eine Basistechnologie, kein Ersatz für GIS-Datenformate.

Es eignet sich hervorragend zum Darstellen, Debuggen oder Übertragen einzelner Geometrien, nicht jedoch zur Speicherung oder Analyse kompletter Geodatenprojekte.



Kennzeichen von GIS-Datenformaten

- Beinhalten räumliche Objekte als Geometrien im Raum (Punkt, Linie, Fläche)
- Verknüpfung von Sachinformationen (Attributen) mit räumlichen Objekten
- Raumbezugssystem (Koordinatensystem)
- Unterstützung von Topologien (Beziehung von Objekten zueinander)
- Metadaten (Nachvollziehbarkeit und Qualitätssicherung)
- Unterstützung räumlicher Abfragen und Indizes
- Interoperabilität (Austauschfähigkeit mit unterschiedlichen Systemen)
- Strukturierung in Layer und Feature-Klassen
- Informationen zur Darstellung der Geometrien (Symbole, Schriften, Schraffuren etc.)

Welche Arten von GIS-Formaten gibt es?

Datenarten

Vektordatenformate:

Diese speichern geografische Objekte in Form von Punkten, Linien oder Polygonen. Beispiele:

- <u>Shapefile</u>: Eines der bekanntesten Formate, bestehend aus mehreren Dateien.
- <u>GeoJSON</u>: Textbasiertes Format auf JSON-Basis, gut für Webanwendungen geeignet.
- <u>GeoPackage</u>: Modernes, kompaktes SQLite-basiertes Format für Vektorund Rasterdaten.

Rasterdatenformate:

Diese speichern Daten als Pixelraster, ähnlich wie ein digitales Bild. Jedes Pixel enthält einen Wert (z. B. Höhe, Temperatur, Satellitenreflexion). Beispiele:

- GeoTIFF: Häufig für Fernerkundungsdaten und Höhenmodelle verwendet.
- ECW: Format zur verlustbehafteten Speicherung sehr großer Rasterdaten.

Zusätzlich gibt es <u>Datenbank- und Webformate</u> wie <u>PostGIS</u> (räumliche Erweiterung von PostgreSQL) oder <u>WMS/WFS</u> (Webdienste für Karten und Features).

OpenSource vs. Proprietär

Vorteile von Open-Source-Formaten

Open-Source-Formate bieten Transparenz, Flexibilität und starke Community-Unterstützung, was eine einfache Integration und Innovation ermöglicht.

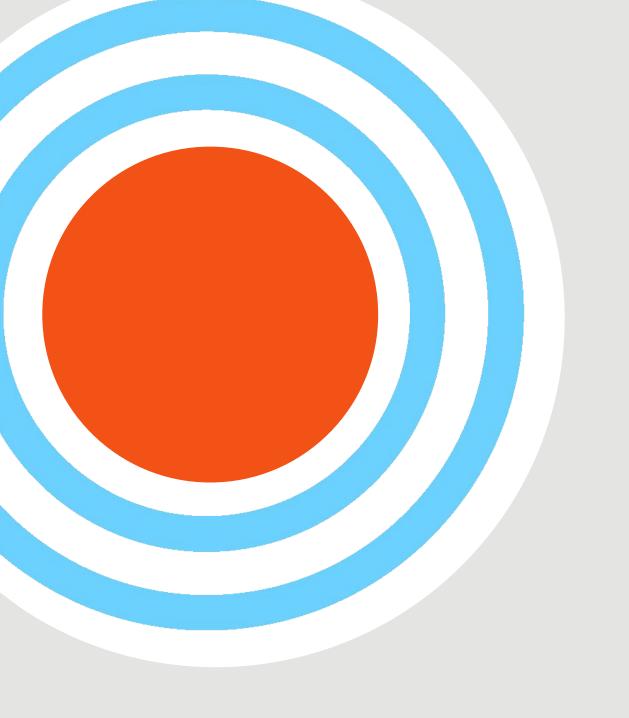
Stärken von proprietären Formaten

Proprietäre Formate sind oft leistungsfähiger und besser in bestimmte Softwarelösungen integriert, können jedoch das Teilen und Bearbeiten einschränken.

Beispiele: ESRI File Geodatabase, MapInfo TAB/MIF, GeoMedia SmartStore, , Bentley MicroStation Design File

Die richtige Formatwahl

Die Entscheidung zwischen den Formaten hängt von den Projektanforderungen, der benötigten Funktionalität und langfristigen Überlegungen zur Datenstrategie ab.


Wieviele Datenformate gibt es?

- 15 20 Kerndatenformate (etabliert und weit verbreitet)

 z.B. Shapefile, GeoPackage, GeoJSON, GeoTIFF, FileGDB, GML
- 20 80 Erweiterte Formate (Spezialformate, proprietär) z.B. LAS, NetCDF, CityGML
- ca. 30 OGC-Standardisierte Fomate z.B. GML, KML, GeoPackage, GeoTIFF, 3D Tiles

ca. 250 Formate insgesamt (inkl. historischer Formate)

Entwicklung

1970er-1980er

Erste digitale Kartenformate E00, Coverage, GRID – einfache Raster- und Vektorstrukturen

2000er

XML & Web-GIS
GML (OGC-Standard), KML (Google Earth),
WMS/WFS-Webstandards

2020er-heute

Integration, 3D & Signierung 3D Tiles, CityGML, GeoParquet, Authentifizierte GeoPackages

1990er

Shapefile & GeoTIFF
ESRI führt Shapefile ein
GeoTIFF wird Standard für Rasterdaten

2010er

Moderne, offene Formate GeoPackage (OGC 2014), GeoJSON, SpatiaLite

Aktuelle Trends

Echtzeit-Datenstreaming

Das Streaming von Geodaten ermöglicht die Echtzeitverarbeitung räumlicher Informationen für sofortige Erkenntnisse und Entscheidungsfindung.

Semantische Datenformate

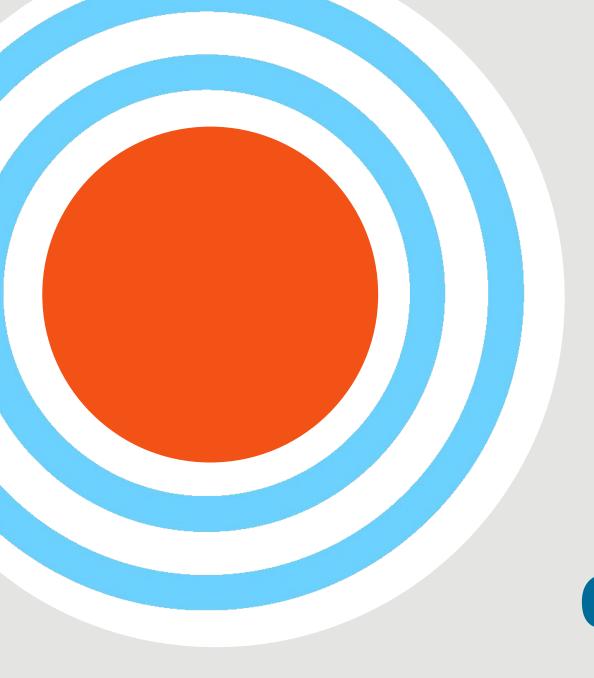
Semantische Formate bereichern GIS-Daten mit Bedeutung, was die maschinelle Interpretation und Interoperabilität verbessert. z.B. RDF

KI-Integration in GIS

Die Integration von KI in GIS erfordert Datenformate, die große Datensätze effizient verarbeiten, um fortgeschrittene Analysen zu unterstützen.

Cloudbasierte GIS-Lösungen

Cloud-GIS-Lösungen setzen auf Datenformate, die für verteilte Systeme und skalierbare Rechenumgebungen optimiert sind.


NoSQL, Datalakes, BIGData

NoSQL, Data Lakes und GeoParquet markieren den Übergang von klassischen GIS-Datenformaten zu datenbank- und cloudzentrierten Geodaten-Ökosystemen.

Datenaustausch über Schnittstellen (API)

Die GIS-Welt bewegt sich zunehmend weg von Datei-basierten Formaten hin zu API-zentrierten Ökosystemen, in denen Daten nicht mehr exportiert, sondern nur noch abgefragt werden und Analysen in der Cloud stattfinden.

Überblick über die wichtigsten GIS-Datenformate

Das Shapefile ist eines der ältesten und am weitesten verbreiteten GIS-Vektorformate, ursprünglich von **ESRI** entwickelt.

Aufbau:

Ein Shapefile besteht aus **mehreren Dateien**, die zusammengehören (z. B. .shp, .shx, .dbf, .prj)

- .shp → Geometrien (Punkte, Linien, Polygone)
- .dbf → Attributtabelle (Datenbank im DBase-Format)
- .shx → Index der Shapes (Offset + Länge)

Vorteile:


- Mit Abstand am weitesten verbreitetes Geo-Datenformat
- Kompatibel mit nahezu allen GIS-Programmen
- Geringer Speicherplatzbedarf, relativ effizient in Bezug auf die Dateigröße. Die resultierende Datei ist im Vergleich zu anderen (meist textbasierten) Formaten relativ klein.
- Proprietär aber Offene Spezifikation → hohe Interoperabilität

Shapefile must die!

- Kein einheitliches Dateiobjekt (mehrere Dateien nötig)
- Begrenzte Feldnamenlänge (max. 10 Zeichen)
- Keine Unterstützung für Unicode oder 3D-Geometrien

🕢 ht

http://switchfromshapefile.org

Shapefile must die!

08.10.2017 ... Alternatives · OGC GeoPackage · FlatGeobuf · GeoJSON · OGC GML · SpatiaLite · CSV · OGC KML · ESRI GeoDatabase.

Shapefile is a bad format

Why is Shapefile so bad? Here are several reasons why the Shapefile is a bad format and you should avoid its usage:

- No coordinate reference system definition.
- It's a multifile format.
- Attribute names are limited to 10 characters.
- Only 255 attributes. The DBF file does not allow you to store more then 255 attribute fields.
- · Limited data types. Data types are limited to float, integer, date and text with a maximum 254 cha
- Unknown character set. There is no way to specify the character set used in the database.
- It's limited to 2GB of file size. Although some tools are able to surpass this limit, they can never exercise the surpass the
- No topology in the data. There is no way to describe topological relations in the format.
- Single geometry type per file. There is no way to save mixed geometry features.
- More complicated data structures are impossible to save. It's a "flat table" format.
- There is no way to store 3D data with textures or appearances such as material definitions. There
 objects.
- Projections definition. They are incompatible or missing.
- Line and polygon geometry type, single or multipart, cannot be reliably determined at the layer lefeature level.
- There is no NULL value, it is painful for numeric values
- Add more ...

OGC GeoPackage

Das **GeoPackage** ist ein modernes, offenes Format, basierend auf einer **SQLite-Datenbank**. Es kann sowohl Vektor- als auch Rasterdaten speichern.

Aufbau:

Eine einzige Datei (.gpkg), die Tabellen mit Geometrien, Attributen und Metadaten enthält.

Vorteile:

- Sehr kompakt (eine Datei .gpkg)
- Unterstützung für mehrere Layer in einer Datei
- Standardisiert durch OGC (Open Geospatial Consortium)
- Unterstützt 3D-Geometrien und komplexe Datentypen

Nachteile:

- Weniger verbreitet als Shapefile, aber zunehmend Standard
- Etwas komplexer in der internen Struktur

	<u>GeoPackage</u>	<u>Shapefile</u>	
Dateiobjekt	Alles in einer einzigen Datei (.gpkg)	Besteht aus mehreren Dateien (.shp, .shx, .dbf, .prj,).	
Dateigröße	Unterstützt große Datenmengen (>4 GB Begrenzung auf 4 GB und max. 2 GB problemlos)		
Attribute	Keine relevante Begrenzung bei Feldnamen oder -typen Max. 10 Zeichen pro Feldname, nur einfache Datentypen (z. B. kein Text Zeichen).		
Encoding	Unterstützt utf-8 → Umlaute, Sonderzeichen, internationale Zeichen	Nur ANSI-Kodierung, was zu Zeichenproblemen führen kann	
Projekttion / Metadaten	Speichert Koordinatensysteme, Metadaten und Stile in der Datei Benötigt eine separate .prj-Datei		
Featureklassen / Layer	Kann mehrere Layer (Vektor + Raster) in einer Datei speichern	I NUIT EIN LAVET DTO LIATEL	
Standard	Offener OGC-Standard	Proprietäres ESRI-Format (zwar dokumentiert, aber alt)	
Erweiterungen	Unterstützt Erweiterungen (z. B. 3D, Raster, Styles, SQL-Abfragen)	Kein Support für moderne GIS-Funktionen	

Shape vs. GeoPackage

Vorteile von GeoPackage

- Weniger Chaos, einfacher zu kopieren, verschicken und versionieren.
- Ideal für umfangreiche Projekte und große Datensätze.
- Mehr Flexibilität bei Datenstrukturen und längeren Attributnamen.
- Sprach- und systemunabhängig.
- Selbstbeschreibend und vollständiger.
- Kompakter, strukturierter und besser für Projektorganisation.
- Zukunftssicher und interoperabel.
- Wächst mit neuen Anforderungen.

Das GeoPackage ist das zeitgemäße, offene und leistungsfähige Nachfolgeformat des Shapefiles – kompakter, flexibler und besser für moderne GIS-Projekte geeignet.

Nur wer mit sehr alten GIS-Systemen arbeitet, hat heute noch echte Gründe, Shapefiles zu verwenden!


```
"type": "Feature",
"geometry": {
  "type": "Point",
  "coordinates": [125.6, 10.1]
"properties": {
  "name": "Dinagat Islands"
```

GeoJSON

Ein modernes, textbasiertes Format auf JSON-Basis (JavaScript Object Notation). Es wird häufig in **Web-GIS-Anwendungen** verwendet.

Aufbau:

Alle Daten (Geometrien + Attribute + Koordinatensystem) stehen in einer einzigen, lesbaren Textdatei.

Vorteile:

Einfach zu lesen und zu bearbeiten (auch mit Texteditoren) Ideal für den Datenaustausch im Web Unterstützt verschiedene Geometrie-Typen (Point, LineString, Polygon usw.)

Nachteile:

Größere Dateigröße im Vergleich zu binären Formaten Weniger effizient bei sehr großen Datensätzen

fname, Inam
nancy, davo
erin , bora
tony , rapha

CSV

Einfaches Text-Tabellenformat (Comma-Separated Values), das Spalten durch ein Trennzeichen voneinander abgrenzt.

Kein"echtes" GIS-Format, wird aber häufig genutzt, um Punktdaten mit Koordinaten zu speichern.

Aufbau:

Jede Zeile entspricht einem Datensatz; Spalten enthalten Attribute. Wenn Spalten für Koordinaten (x, y, z) vorhanden sind, können GIS-Programme daraus Punkte erzeugen.

Vorteile:

- Sehr einfach, klein und universell lesbar
- Kompatibel mit Excel, QGIS, Python etc.
- Ideal für Datenaustausch und Attributtabellen

Nachteile:

- Keine native Geometrie- oder Projektionseigenschaften
- Nur für Punktdaten geeignet (keine Linien/Polygone)
- Fehleranfällig bei falscher Trennung oder Kodierung

	<u>Typ</u>	<u>Struktur</u>	<u>Hauptvorteil</u>	<u>Hauptnachteil</u>	<u>Typische</u> <u>Anwendung</u>
Shapefile	Binär	Mehrere Dateien	Sehr verbreitet	Sehr viele Einschränkungen, Nicht zeitgemäß	Klassische GIS- Projekte
GeoJSON	Text	Eine Datei	Lesbar & Web- freundlich	Dateigröße	Web-GIS, Datenaustausch
GeoPackage	SQLite DB	Eine Datei	Modern & vielseitig	Komplexer Aufbau	Moderne GIS- Systeme
CSV	Text	Tabellarisch	Einfach & universell	Keine echte Geometrie	Punktdaten, Tabellenimport

Übersicht der häufigsten GIS-Datenformate

<GML>

GML

Offener XML-basierter OGC-Standard zur Beschreibung und Austausch von geografischen Informationen. Es wird vor allem in Verwaltungen, Kataster- und INSPIRE-Projekten verwendet.

Aufbau:

GML-Dateien bestehen aus **XML-Elementen**, die Geometrien (z. B. <gml:Point>, <gml:Polygon>) und zugehörige Attribute beschreiben. Sie sind **textbasiert**, menschenlesbar und maschinenverarbeitbar.

Vorteile:

- Offener und standardisierter OGC-Standard
- Unterstützt komplexe Geometrien, 3D und Metadaten
- Ideal für Datenaustausch in Behördenumgebungen (INSPIRE)

Nachteile:

- Sehr **umfangreich und komplex** in der Struktur
- Große Dateigrößen
- Nicht ideal f
 ür schnelle Visualisierung oder große Datenmengen
- Langsam in Verarbeitung gegenüber binären Formaten

	<u>GML</u>	<u>GeoJSON</u>
Entwicklung / Standard	Vom OGC entwickelt, offizieller Standard für Datenaustausch in Behörden und INSPIRE	Entwickelt aus JSON , weit verbreitet in Web- und Open-Data-Anwendungen
Datenstruktur		JSON-basiert (einfach, klar strukturiert)
Lesbarkeit / Komplexität Komplex, schwer lesbar für Menschen Leicht ver		Leicht verständlich und manuell lesbar
Dateninhalt	Sehr detailliert. Unterstützt komplexe Geometrien, Metadaten, Relationen, 3D-Modelle	Einfacher – Fokus auf Geometrien (Punkte, Linien, Polygone) und Attribute
Dateigröße / Effizienz	Groß, da XML-Overhead Kleiner und	
Kompatibilität	Gut in Behörden- und Desktop-GIS (z. B. ArcGIS, QGIS)	Ideal für WebGIS, APIs, mobile Anwendungen
Kodierung	UTF-8, stark strukturiert (XML-Schema)	UTF-8, flexibel und leicht validierbar
Anwendung	Austausch und Speicherung komplexer, normierter Geodaten	Schneller, einfacher Datenaustausch im Web

GML vs. GeoJSON

	Typische Nutzung	
GML	Amtliche Geodaten (z. B. Kataster, INSPIRE-Daten, Verwaltungsportale) - Austausch zwischen Behörden und GIS-Systemen - Langfristige, standardisierte Datenspeicherung stark, normiert und präzise, aber komplex → ideal für Behörden , Kataster , INSPIRE	
GeoJSON	Webkarten & interaktive Anwendungen (Leaflet, Mapbox, OpenLayers) - Mobile GIS-Apps - Open-Data-Portale - Datenaustausch zwischen Webdiensten leicht, schnell und modern → ideal für Webkarten, Open Data, interaktive Anwendungen	

GML vs. GeoJSON

KML

Ein XML-basiertes Format, ursprünglich von Keyhole Inc. entwickelt (später von Google übernommen). Es ist das Standardformat von Google Earth zur Visualisierung räumlicher Daten.

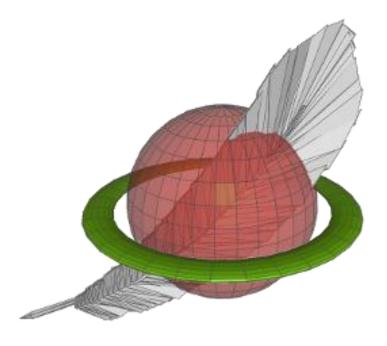
Aufbau:

- .kml → unkomprimierte Textdatei.
- . kmz → komprimierteingebetteten Bildern oder Symbolen

Vorteile:

- Einfach zu visualisieren (z. B. in Google Earth, Google Maps)
- Lesbar und leicht zu verstehen
- Kann Multimedia-Elemente enthalten (Icons, Fotos, Hyperlinks)

Nachteile:


- Wenig geeignet f
 ür GIS-Analysen (mehr Präsentationsformat)
- Genauigkeit bei großen Datensätzen
- Teilweise proprietäre Erweiterungen von Google

KML = Anzeige & Visualisierung

GML = Austausch & semantische Genauigkeit

SpatialLite

Räumliche Erweiterung von SQLite, einer kompakten, dateibasierten Datenbank. Ermöglicht, **räumliche Datenbankfunktionen** (ähnlich wie PostGIS, aber ohne Server) in einer einzigen Datei zu nutzen.

Aufbau:

- Eine .sqlite-Datei enthält Tabellen für Geometrien, Attribute und räumliche Indizes.
- Unterstützt SQL-Abfragen, Layerverwaltung und OGC-konforme Geometrien.

Vorteile:

- Alles in einer Datei (ähnlich wie GeoPackage)
- Unterstützt SQL, Indizes, räumliche Abfragen
- Kompakt und effizient
- Offenes Format, leicht mit GIS- und Datenbanktools nutzbar

Nachteile:

- Weniger verbreitet als GeoPackage
- Etwas komplexer für Einsteiger
- Teilweise Inkompatibilitäten zwischen GIS-Programmen
- Keine native Rasterunterstützung

OGC GeoPackage	 Offener OGC-Standard – weltweit anerkannt und dokumentiert Ist heute das Standardformat für Austausch, Speicherung und Nutzung in praktisch allen GIS-Umgebungen. Ideal für Datenaustausch und Archivierung Eingeschränkte SQL-Funktionalität
SpatialLite	 Nach wie vor im Einsatz für lokale, SQL-basierte Analysen Räumliche Indizes und komplexe SQL-Abfragen möglich wenn man volle Kontrolle über die Datenbank braucht (PostGIS light) Entwicklung und Prototyping Keine Rasterdaten-Unterstützung

GeoPackage vs. SpatialLite

Signierung von GIS-Datenformaten

<u>Format</u>	<u>Eignung</u>	<u>Begründung</u>
Shapefile	X Sehr schlecht geeignet	Besteht aus mehreren Dateien (.shp, .dbf, .shx etc.). Keine Möglichkeit, das Gesamtdataset konsistent zu signieren. Hohe Fehleranfälligkeit bei Einzeldateien.
GeoPackage	☑ Gut geeignet	Da auf SQLite basierend, kann die gesamte Datei über digitale Signaturverfahren (z.B. CMS, PGP oder Zertifikats-Hash) gesichert werden. OGC arbeitet zudem an Spezifikationen für authentifizierte GeoPackages.
GeoJSON	⚠ Teilweise geeignet	JSON kann über JSON Web Signature (JWS) signiert werden, aber dafür braucht es separate Standards. Noch keine weit verbreitete Implementierung im GIS-Kontext.
GML	Sehr gut geeignet	XML-Struktur ermöglicht digitale Signaturen nach XAdES-Standard (XML Digital Signature). Wird bereits in INSPIRE, AFIS-ALKIS-ATKIS, E-Government-Diensten
csv	⚠ Begrenzt geeignet	Kann signiert werden (z.B. über Prüfsummen oder digitale Signaturen), aber keine native GIS-Struktur oder räumliche Integrität – also kein echtes GIS-Format.

GIS-Formate und Integritätsprüfung (Signierung)

<u>Format</u>	<u>Rang</u>	<u>Begründung</u>
GML	>6	Sehr Hoch: XML-basierte Standards unterstützen eingebettete digitale Signaturen (XAdES), bereits in amtlichen Prozessen etabliert. Am besten geeignet, insb. für amtliche, standardisierte Anwendungen (mit XML-Signaturen). "eGovernment-konform, behördlich, standardisiert"
GeoPackage	3	Hoch: Ganze Datei kann sicher signiert werden; OGC plant Signatur- und Hash- Erweiterungen. Ideal für moderne, portable Workflows. Geeignet für für moderne, portable, dateibasierte GIS-Workflows (Signatur der gesamten Datei). "modern, effizient, universell portabel"
GeoJSON	3	Mittel: Technisch möglich (JWS), aber noch kein Standard in GIS-Systemen. Zukunftspotenzial für WebGIS-Signaturen.
Shapefile	0	Ungeeignet: Keine integrierten oder etablierten Mechanismen für kryptografische Signaturen. Multifile-Format.

GIS-Formate und Integritätsprüfung (Signierung)

Thomas Galka Technologie Manager | Senior Consultant

thomas.galka@axmann.at

axmann geoinformation

Modecenterstraße 22 / Top D59-D61 1030 Wien

Tel.: +43 1 203 91 47 office@axmann.at www.axmann.at