GeoAl für die Datenvalidierung

Key Concepts um Daten für Al "fit" zu machen

Paris-Lodron-University Salzburg

Department of Geoinformatics – Z_GIS

Johannes Scholz

Department of Geoinformatics – Z_GIS Paris-Lodron-University Salzburg

www.zgis.at | | www.johannesscholz.net

Table of Contents

- What is GeoAl?
- Motivation
- Data Quality as critical Success Factor
 - GeoAl for Anomaly Detection
 - Bias Correction with GeoAl
 - GeoAl for Semantic Enrichment
- Applications in Selected Projects
 - Virtual Shepherd
 - RegioWoodTrain
 - iKlimEt

Geospatial Artificial Intelligence

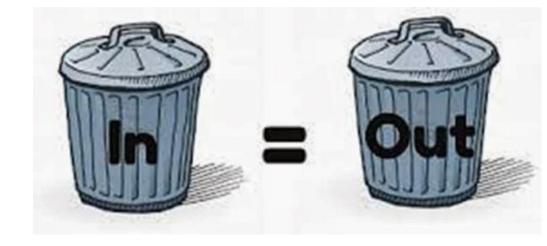
- "GeoAl can be regarded as a study subject to develop intelligent computer
 programs to mimic the processes of human perception, spatial reasoning, and
 discovery about geographical phenomena and dynamics
 - to advance our knowledge,
 - to solve problems in human environmental systems and their interactions,
 - with a focus on spatial contexts and roots in geography or GIScience." (Gao, 2021)
- Spatially explicit models incorporating spatial contexts (Yan et al., 2018) can outperform traditional nonspatial AI models in many tasks:
 - image classification,
 - geographic knowledge graph summarization (Yan et al., 2019),
 - and geographic question-answering problems (Mai et al., 2019).



GeoAl - Additional Questions?

- Questions that may surface when:
 - Representing
 - Manipulating
 - Storing
 - Analyzing, and
 - Visualizing

Geographic Data ...!



Motivation

Al Models are dependent on training and verification data

- Heterogeneity
- Incompleteness
- Bias
- Flaws

Data Quality as Critical Success Factor

• Completeness:

Missing values can distort patterns or hide important relationships.

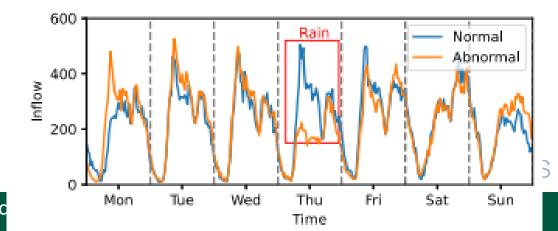
Consistency:

- Inconsistent formats or conflicting entries complicate modeling and interpretation.
- Representativeness:
- Skewed samples result in unfair or non-generalizable models

• Timeliness:

• Outdated data fails to reflect current realities—especially critical in dynamic domains like mobility or energy. ng and interpretation.

GeoAl for Anomaly Detection


- GeoAl leverages spatial and temporal patterns to identify outliers
 - Spatial context (e.g. neighborhood similarity, geographic clustering)
 - **Temporal dynamics** (e.g. recurring patterns, seasonality)
- Key Methods:
 - DBSCAN: Density-based clustering to detect spatial outliers without needing labeled data.
 - **Autoencoders**: Neural networks trained to reconstruct input—large reconstruction errors signal anomalies.
 - ST-GCN (Spatio-Temporal Graph Convolutional Networks):

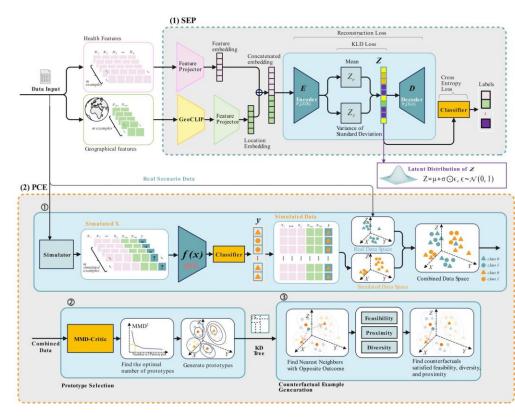
 Models spatial dependencies and temporal

 evolution simultaneously, ideal

 for dynamic sensor networks.

Deng, L., Lian, D., Huang, Z., & Chen, E. (2022). Graph convolutional adversarial networks for spatiotemporal anomaly detection. *IEEE Transactions on Neural Networks and Learning Systems*, *33*(6), 2416-2428.

Bias Correction with GeoAl (1)


- GeoAl integrates spatial context to detect and mitigate bias that arises from geographic (and/or demographic) imbalances.
- Spatial fairness-aware learning ensures that models treat regions and populations equitably, even when data availability varies.
- Key Methods
 - Reweighting: Adjusts the influence of overrepresented regions or groups to balance model learning.
 - Fairness-aware algorithms: Incorporate fairness constraints during training to reduce disparate impact.
 - Spatial stratification: Ensures that training samples are geographically diverse and representative.

Bias Correction with GeoAl (2)

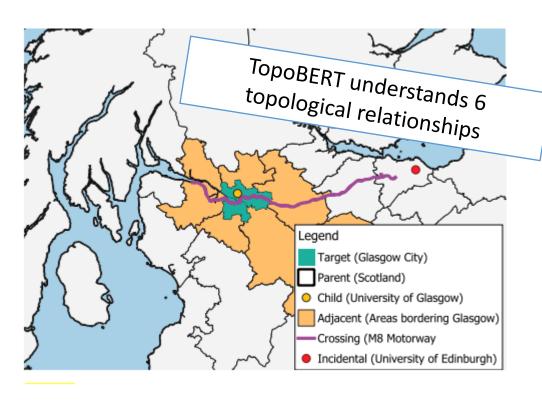
- Some issues we should pay attention to:
 - Spatial Autocorrelation: Nearby locations often share similar characteristics. Fairness-aware models must account for this to avoid overfitting to dense urban clusters.
 - Sensitive Attributes: In geospatial contexts, attributes like income level, ethnicity, or infrastructure access may correlate with location—raising fairness concerns.
 - Representation Bias: Volunteered geographic information (VGI) and sensor data often reflect the interests of more connected or affluent communities.
- Counterfactual Fairness in Spatial Models:
 - Ensure that predictions remain consistent if a location's demographic profile were different.

Ma, J., Guo, R., Zhang, A., & Li, J. (2023, August). Learning for counterfactual fairness from observational data. In Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and data mining (pp. 1620-1630). Ma, J., Guo, R., Wan, M., Yang, L., Zhang, A., & Li, J. (2022, February). Learning fair node representations with graph counterfactual fairness. In Proceedings of the fifteenth ACM international conference on web search and data mining (pp. 695-703). Zhang, J., Mu, L., Zhang, D., Chen, Z., Rajbhandari-Thapa, J., Pagan, J. A., ... & Zhou, Z. (2025). SpaCE: a spatial counterfactual explainable deep learning model for predicting out-of-hospital cardiac arrest survival outcome. International Journal of Geographical Information Science, 1-32.

GeoAl for Semantic Enrichment

- Semantic enrichment refers to enhancing raw geospatial data with meaningful, contextual information - improving interpretability & usability for downstream tasks
- GeoAl Capabilities:
- Ontology + (Geo)Data = (Geo)Knowledge Graph • Text + Location Fusion: Combine textual metadata (e.g., descriptions, tags) with geolocation to classify or cluster features.
 - Embedding Techniques: with NLP, LLMs or BERT generating semantic vectors for objects, places and/or events.
 - Ontology Integration: Link data to structured vocabularies (e.g., INSPIRE themes, GeoNames) for interoperability.

GeoAl for Semantic Enrichment



GeoBERT

GeoBERT

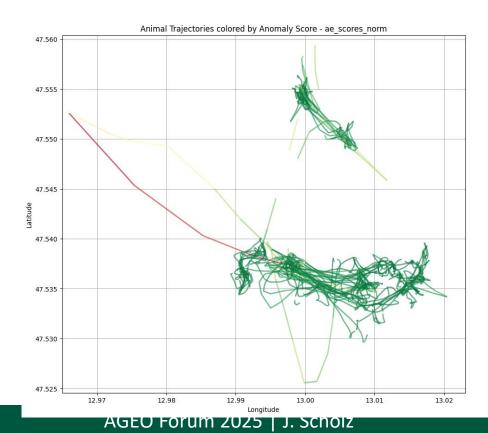
- built around a Bidirectional Encoder Representations from Transformers (BERT) model (Devlin et al., 2019)
- BERT can extract syntactical and semantic information from sentences, including:
 - subject/object/verb relationships (Nastase and Merlo, 2023)
 - and capturing structural linguistic information (Jawahar et al., 2019).
- BERT has also been shown to be effective in identifying spatial relationships within natural language (Shin et al., 2020),
 - "Tom is on the box"
 - "The cat is in the house"

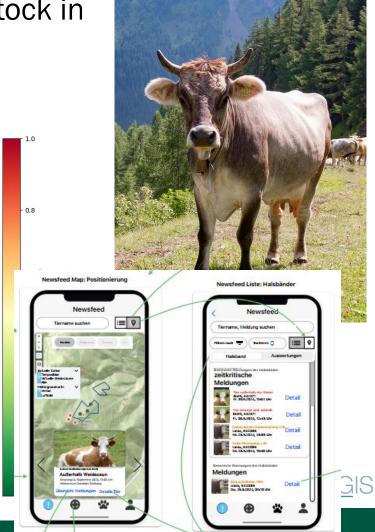
"London is a city in Ontario, Canada. Its station, situatea on York Street, has rail links to the neighbouring towns of Woodstock, and onward to Toronto."

Shingleton, J., & Basiri, A. (2024). Enhancing toponym identification: Leveraging Topo-BERT and open-source data to differentiate between toponyms and extract spatial relationships. *AGILE: GIScience Series*, *5*, 1-10. Shingleton, J., & Basiri, A. (2025). How close is close? An analysis of the spatial characteristics of perceived proximity using Large Language Models. *AGILE: GIScience Series*, *6*, 11. Qiu, Q., Zheng, S., Tian, M., Li, J., Ma, K., Tao, L., & Xie, Z. (2024). A deep neural network model for Chinese toponym matching with geographic pre-training model. *International Journal of Digital Earth*, *17*(1), 2353111

Applications in Selected Projects

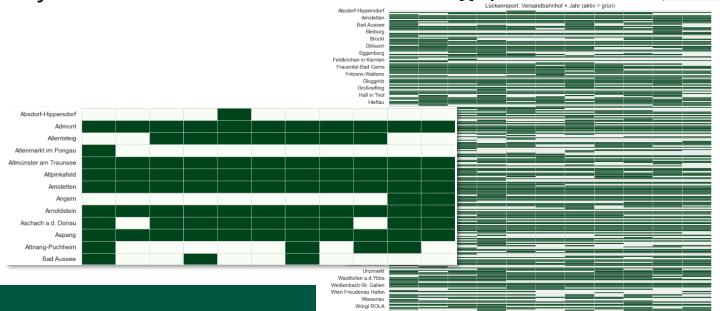
Virtual Shepherd

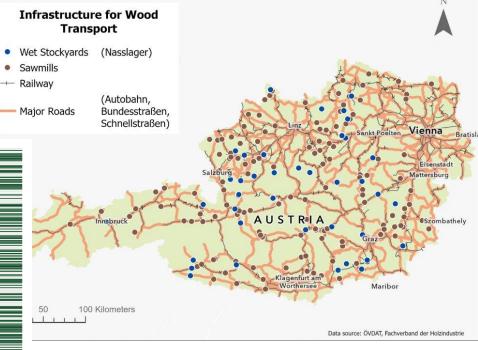




SALZBURG

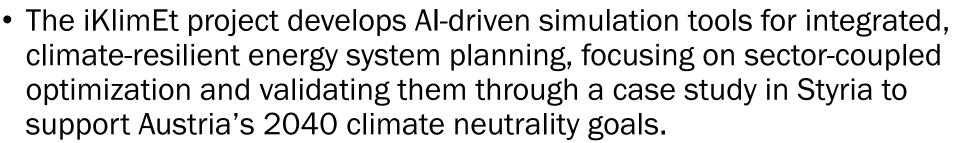
- Virtual Fencing and Virtual Shepherd that supervises lifestock in Alpine regions
- Detection of anomalies in cow movement
 - Trajectories
 - Additional sensors (accelerometer, temperature, ...)
- GeoAl:
 - Autoencoder-based anomaly detection
 - Edge Devices(!)



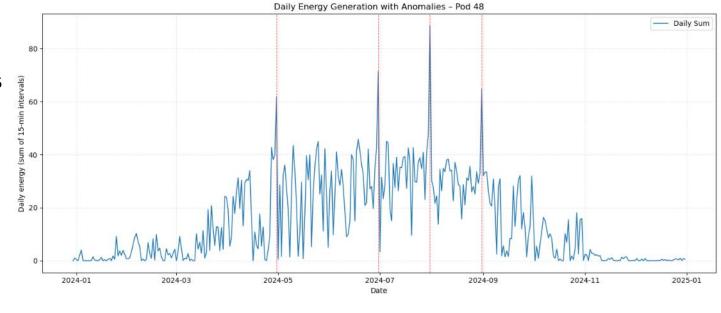

RegioWoodTrain

- The project develops cooperative, Al-driven strategies to shift wood transport toward climatefriendly rail logistics, improving resilience and sustainability in Austria's regional supply chains.
- ST-GNNs based on a graph-based representation of the data

 Identification of missing data and usage of synthetic data to close some "data gaps"



iKlimEt



- LSTM autoencoder detects anomalies in smart meter time series data (energy generation).
 - Divided into daily sliding windows (96 values of 15 minutes each) with a 12-hour overlap and then normalised so that all pods are comparable.
- Each sliding window therefore represents one day of energy generation → training data.
- Reconstruction errors were calculated, and windows with the highest errors top 3% were marked as anomalies.

Summary

Why GeoAl?

- Enhances AI models with spatial reasoning & geographic context
- Tackles challenges in data quality, bias, and semantic richness

Core Use Cases

- Anomaly Detection: DBSCAN, Autoencoders, ST-GCN
- **Bias Correction**: Reweighting, fairness-aware learning, spatial stratification
- Semantic Enrichment: GeoBERT, TopoBERT, Ontology integration

GeoAl bridges spatial intelligence and machine learning to improve data quality, fairness, and interpretability—critical for robust, ethical Al systems

Fachbereich Geoinformatik

Shaping Geospatial Futures

agit2026

Konferenz für Geoinformatik Salzburg, 8. – 9. Juli

GeoAl für die Datenvalidierung

Key Concepts um Daten für Al "fit" zu machen

Paris-Lodron-University Salzburg

Department of Geoinformatics – Z_GIS

Johannes Scholz

Department of Geoinformatics – Z_GIS Paris-Lodron-University Salzburg

www.zgis.at | | www.johannesscholz.net

